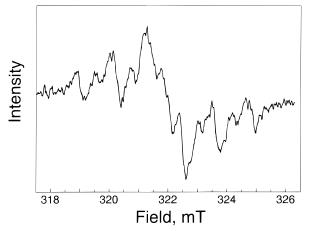
Radical Homo- and Copolymerization of (2Z)-4-{1-(5-Methyl-2-pyrazolinyl)}-4-oxo-2-butenoic Acid, an Acyclic Z-1,2-Disubstituted Vinyl Compound

Akihito Hashidzume, Tetsuya Noda, Atsushi Kajiwara,† Yotaro Morishima, and Mikiharu Kamachi*


Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Received April 15, 1998 Revised Manuscript Received July 27, 1998

Since there are only a few papers concerning the polymerization of the C=N double bond, we have been investigating the polymerization of 2,3-diaza-1,3-butadiene derivatives (azine compounds). In the course of the study on the polymerizability of azines, Kamachi^{2a} found that acetaldehyde azine (CH₃CH=N-N=CHCH₃, AcAz) was spontaneously copolymerized with maleic anhydride (MAnh) without any initiators. To clarify a mechanism, we have been studying the copolymerization in detail.2b In this study, we succeeded in the isolation of a one-to-one adduct of AcAz and MAnh as a precursor for the copolymerization. The one-to-one adduct was confirmed to be (2Z)-4-{1-(5-methyl-2-pyrazolinyl)-4-oxo-2-butenoic acid (1), an acyclic Z-1,2disubstituted vinyl compound, which was polymerizable in the presence of radical initiators without Z-E (cistrans) isomerization. In this communication, we report the radical homo- and copolymerization of **1**.

When AcAz was added to a solution of MAnh in THF, the reaction mixture changed immediately to pale yellow. Then, the color gradually changed to orange, and THF-insoluble powder, which was homopolymer of 1, deposited. The THF solution was separated from the THF-insoluble powder by filtration. A colorless crystalline product was isolated from the THF-soluble fraction by recrystallization in toluene—hexane. The chemical structure of the crystalline product was investigated by elemental analysis, EI-mass, IR, Raman, H NMR, 13C NMR, 2D H-H COSY, and 2D C-H COSY. These spectroscopic data revealed that the product is a one-to-one adduct of AcAz with MAnh (1).

The results of the radical polymerization of ${\bf 1}$ are listed in Table 1. When 2,2'-azobis(isobutyronitrile) (AIBN) was used as an initiator, a THF-insoluble polymer was not formed. However, when dimethyl 2,2'-azobis(isobutyrate) (MAIB) was used, a THF-insoluble polymer was obtained. The $M_{\rm W}$ of the THF-soluble

Figure 1. ESR spectrum of the propagating radical for **1** initiated by MAIB in benzene at 60 °C under photoirradiation: [1] = 27 mM; [MAIB] = 2.7 mM; modulation width = 0.20 mT; modulation frequency = 100 kHz.

polymer was determined to be 5.0×10^3 by GPC. The M_w of the THF-insoluble polymer should be higher than 5.0×10^3 , because the IR spectra of THF-insoluble and THF-soluble polymers were almost the same. The result that MAIB gave a higher yield and a higher molecular weight of polymer than AIBN is similar to the case of the polymerization of dialkyl fumarates. Furthermore, polymer formation was remarkably retarded upon addition of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicative of a free radical mechanism.

To obtain information on the propagating radical in the polymerization of **1**, we measured ESR spectra of the radical polymerization system. Figure 1 shows the ESR spectrum of the propagating radical for **1** initiated by MAIB under photoirradiation. This result indicates that the spectrum is similar to that of dialkyl fumarates observed by Otsu et al.⁵ Thus, we concluded that the propagating radical of **1** has a structure similar to that of dialkyl fumarates.

The result of the elemental analysis of the polymer shows that the polymer was formed by addition polymerization (Anal. Čalcd for $(C_8H_{10}N_2O_3)_n$: C,52.74; H, 5.53; N, 15.38. Found: C, 52.80; H, 5.49; N, 14.96). Figure 2 shows the IR spectra of the polymer and 1. In the spectrum of **1**, the absorption bands due to the C= O of the carboxylic acid and the amide are observed at 1705 and 1623 cm⁻¹, respectively.⁶ Furthermore, in the spectrum of 1, the absorption bands due to the C=N and C=C bonds are observed at 1623 and 1550 cm⁻¹, respectively.⁶ In the spectrum of the polymer, the absorption band due to the C=C double bond disappeared, although the absorption bands due to the C=O and C=N double bonds are observed. These results indicate that the polymerization of **1** proceeds through the C=C double bond (Scheme 1).

Otsu et al. Teported that dialkyl maleates were polymerized by a radical initiator after the isomerization from cis to trans around the C=C double bond by a reagent, such as morpholine. To confirm whether Z–E isomerization occurs around the C=C double bond of 1 during the polymerization, we measured 1H NMR spectrum of 1 after heating it in THF at 60 $^{\circ}C$ for 6 h. The spectrum showed that no isomerization occurred.

[†] Current Address: Department of Material Science, Nara University of Education, Takabatake, Nara 630-8301, Japan.

Table 1. Polymerization of 1 with Azo Initiators

1, mg (mmol)	solvent	concentration, M	initiator (mol %)	temperature, °C	time, h	yield, a %	$M_{ m w}^{\;\;b}$	$M_{\rm w}/M_{ m n}$ b
91 (0.50)	THF	0.5	AIBN (9.1)	80	48	С	1200	2.67
91 (0.50)	THF	1.0	MAIB (4.8)	80	24	18.3	5000^d	1.14^d

^a THF-insoluble fraction. ^b Determined by GPC. ^c Although a THF-insoluble polymer was not formed, a GPC elution diagram showed that the THF-soluble oligomer was formed in a low yield (~10%). d THF-soluble fraction.

Table 2. Radical Copolymerization of 1 and Vinyl Monomers^a

comonomer	initiator (mol %)	yield, ^b %	$M_{ m w}{}^c imes 10^{-3}$	$M_{ m w}/M_{ m n}{}^c$	content of ${f 1}$ in copolymer, d mol $\%$
styrene	AIBN (2.0)	30.0	3.0	1.14	45.2
· ·	AIBN (2.0)	43.1	8.3	1.32	45.9
	BPO (2.0)	2.8	4.9	1.23	45.7
	MAIB (2.0)	35.9	3.7	1.16	44.4
N-vinylcarbazole	AIBN (1.0)	51.2	15.0	1.29	54.1
<i>n</i> -butyl vinyl ether	AIBN (1.0)	14.6	3.6	1.08	76.9
methyl acrylate	AIBN (1.0)	10.3	2.6	1.27	7.9
methyl methacrylate	AIBN (1.0)	35.1	8.6	1.48	0

^a In THF for 24 h at 60 °C. [1] = [comonomer] = 1.0 M. ^b Based on the total amount of comonomers. ^c Determined by GPC. ^d Determined by ¹H NMR.

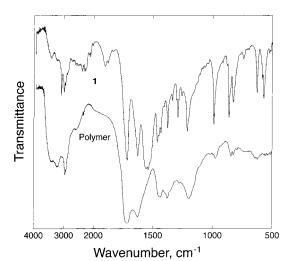


Figure 2. IR spectra of 1 and its polymer (KBr).

Scheme 1. Polymerization of 1

Therefore, to our knowledge, this is the first example of the radical polymerization of acyclic Z-1,2-disubstituted vinyl monomers.

The results of the copolymerization of 1 and vinyl monomers are listed in Table 2. Copolymers with relative high contents of 1 (44.4-45.9, 54.1, and 76.9 mol %, respectively) were produced by copolymerizations of 1 with styrene, N-vinylcarbazole, and butyl vinyl ether. However, a copolymer with a low content of 1 (7.9 mol %) was obtained by copolymerization of 1 and methyl acrylate. The e-values of styrene, N-vinylcarbazole, and butyl vinyl ether are negative (-0.80, -1.29,and -1.50, respectively).⁸ However, the *e*-value of methyl acrylate is positive (0.64).8 These results show that negative e-values of comonomers are required for formation of copolymers with high content of 1. Furthermore, when copolymerization of 1 and methyl

Table 3. Results of Radical Copolymerization of 1 and Styrene^a

run	x_1 in feed ^b	x_1 in copolymer ^c	polymerization time, h	$\overset{\mathbf{yield},^d}{\%}$	$M_{ m w}$, $^e imes 10^3$
1	0.10	0.21	4.0	3.2	3.0
2	0.20	0.39	4.0	7.4	2.7
3	0.30	0.48	3.0	4.8	3.2
4	0.40	0.51	3.0	5.6	3.6
5	0.50	0.51	2.5	6.2	3.5
6	0.60	0.55	3.0	3.9	2.6
7	0.70	0.58	3.0	3.9	3.1
8	0.80	0.62	3.5	8.0	1.9
9	0.90	0.69	3.5	9.1	2.0

^a Initiated by AIBN in THF at 60 °C: [total comonomers] = 1.0 M; [AIBN] = 0.010 M. ^b Mole fraction of **1** in feed. ^c Mole fraction of ${\bf 1}$ in copolymer determined by ${}^1{\bf H}$ NMR. d Acetone-insoluble fraction. ^e Determined by GPC.

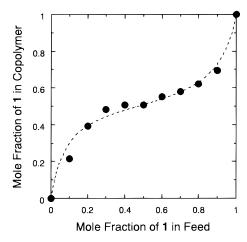


Figure 3. Copolymer composition plots for the copolymerization of 1 and styrene initiated by AIBN in THF at 60 °C: [total comonomers] = 1.0 M; [AIBN] = 0.010 M (a broken line)represents the best-fitted curve.)

methacrylate (MMA) was tried, only the homopolymer of MMA was formed. Since MMA is a 1,1-disubstituted vinyl monomer, the propagating radical of MMA may be too sterically hindered to react with 1.

Copolymerization of 1 and styrene was carried out to estimate the reactivity ratios for 1 and styrene. The results of copolymerization are listed in Table 3. Copolymer composition plot and the best-fitted curve are shown in Figure 3. From this curve, the reactivity ratios for **1** and styrene, r_1 and r_{styrene} , were estimated to be 0.20 ± 0.01 and 0.14 ± 0.02 , respectively, at 60 °C. In addition, the Q- and e-values were also calculated to be 1.4 and 1.1, respectively, from these reactivity ratios.

In conclusion, the radical polymerization of **1**, an acyclic Z-1,2-disubstituted vinyl monomer, was investigated. We found that **1** was polymerized by MAIB to form polymer without Z-E isomerization. This is the first example of homopolymerization of Z-1,2-disubstituted vinyl monomers. Furthermore, it was found that **1** was copolymerized with styrene, N-vinylcarbazole, butyl vinyl ether, or methyl acrylate by using a radical initiator. The reactivity ratios for **1** and styrene, r_1 and r_{styrene} , were estimated to be 0.20 ± 0.01 and 0.14 ± 0.02 , respectively, from the results of copolymerization of **1** and styrene at 60 °C.

References and Notes

(a) Kamachi, M.; Murahashi, S. Makromol. Chem. 1968, 119, 232. (b) Kamachi, M.; Murahashi, S. Bull. Chem. Soc. Jpn. 1973, 46, 6, 2890. (c) Kamachi, M.; Murahashi, S. Polym. J. 1973, 4, 651. (d) Kamachi, M.; Murahashi, S. Polym. J. 1974, 6, 295. (e) Kamachi, M.; Murahashi, S. Polym. J. 1974, 6, 302. (f) Harada, A.; Fujii, H.; Kamachi, M. Macromolecules 1991, 24, 5504. (g) Harada, A.; Kajiwara, A.; Fujii, H.; Kamachi, M. Polymer. J. 1992, 24, 931. (h) Hashidzume, A.; Kajiwara, A.; Harada, A.; Kamachi, M. Macromolecules 1995, 28, 417.

- (2) (a) Kamachi, M. Unpublished data. (b) Hashidzume, A.; Noda, T.; Kajiwara, A.; Morishima, Y.; Kamachi, M. To be published.
- (3) În this reaction, the polymer, the THF-insoluble powder, and the oligomer, contained by the THF-soluble fraction, of **1** were obtained in a relative high yield. The crystalline compound: yield 1.17 g, 12.2%; mp 108.2–109.0 °C; IR (KBr) 1705 (carboxylic acid C=O), 1623 (amide C=O, C=N), 1550 (C=C) cm⁻¹; ¹H NMR (DMSO- d_6 , 270 MHz) δ 1.22 (d, 3H, J = 6.4 Hz), 2.52 (ddd, 1H, J = 12.5, 3.1, 1.8 Hz), 3.12 (ddd, 1H, J = 15.5, 6.2, 1.6 Hz), 4.38 (m, 1H), 6.15 (d, 1H, J = 12.1 Hz), 6.78 (d, 1H, J = 12.1 Hz), 7.15 (t, 1H, J = 1.6 Hz), 12.81 (s, 1H); ¹³C NMR (DMSO- d_6 , 67.9 MHz) δ 19.0, 41.2, 50.1, 128.0, 131.9, 149.3 162.6, 166.4. Anal. Calcd for C₈H₁₀N₂O₃: C, 52.74; H, 5.53; N, 15.38. Found: C, 52.80; H, 5.43; N, 15.33. EI-MS [M⁺]: calcd, 182; found, 182.
- (4) Yoshioka, M.; Otsu, T. Macromolecules 1992, 25, 2599.
- (5) Yamada, B.; Fujita, M.; Kobatake, S.; Otsu, T. *Polym. Bull.* **1992**, *29*, 225.
- (6) Socrates, G. Infrared Characteristic Group Frequencies, Wiley: Chichester, 1994.
- For example: (a) Otsu, T.; Toyoda, N. Makromol. Chem. Rapid Commun. 1981, 2, 79. (b) Otsu, T.; Ito, O.; Toyoda, N. Makromol. Chem. Rapid Commun. 1981, 2, 729. (c) Otsu, T.; Ito, O.; Toyoda, N. J. Macromol. Sci. Chem. 1983, A19, 27. (d) Toyoda, N.; Yoshida, M.; Otsu, T. Polym. J. 1983, 15 255
- (8) Greenley, R. Z. In *Polymer Handbook*, 3rd ed.; Brandrup, J.; Immergut, E. H., Ed.; Wiley: New York, 1989; pp II/ 267-II/274.

MA980590+